Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone.
نویسندگان
چکیده
UNLABELLED Impaired catecholamine handling in the viable infarct border zone may play an important role in ventricular remodeling and lethal arrhythmia. We sought to get further biologic insights into cardiac sympathetic neuronal pathology after myocardial infarction, using multiple tomographic imaging techniques. METHODS In a porcine model of myocardial infarction (n = 13), PET and MR imaging were performed after 4-6 wk and integrated with electrophysiologic testing and postmortem histology. RESULTS PET with the physiologic neurotransmitter (11)C-epinephrine, which is sensitive to metabolic degradation unless it is stored and protected in neuronal vesicles, identified a defect exceeding the perfusion defect (defined by (13)N-ammonia; defect size in all animals, 42 ± 12 vs. 35% ± 12% of left ventricle, P < 0.001). In a subgroup of 7 animals, defect of the metabolically resistant catecholamine (11)C-hydroxyephedrine was smaller than epinephrine (41 ± 8 vs. 47% ± 6% of left ventricle, P = 0.004), whereas defect of a third catecholamine, (11)C-phenylephrine, which is sensitive to metabolic degradation, was similar to epinephrine (48 ± 6 vs. 47% ± 6%, P = 0.011 vs. perfusion defect). Histology confirmed the presence of nerve fibers in the infarct border zone. Tagged MR imaging identified impaired peak circumferential wall strain and wall thickening in myocardial segments with epinephrine/perfusion mismatch (n = 6). Confirmatory of prior work, inducible ventricular tachycardia was associated with a larger epinephrine/perfusion mismatch (n = 11). CONCLUSION In the viable infarct border zone, neuronal vesicular catecholamine storage and protection from metabolic degradation are more severely altered than catecholamine uptake. This alteration may reflect an intermediate state between normal innervation and complete denervation in advanced disease.
منابع مشابه
Internal and cortical border-zone infarction: clinical and diffusion-weighted imaging features.
BACKGROUND AND PURPOSE The pathogenesis of internal border-zone (IBZ) and cortical border-zone (CBZ) infarcts is unclear. Both types of infarct have been combined into a single group in most previous reports, which has produced conflicting results. We hypothesized that different pathogenic mechanisms underlie IBZ and CBZ infarcts. METHODS We reviewed 946 consecutive patients with ischemic str...
متن کاملRegenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens.
BACKGROUND Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement. METHODS AND RESULTS Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and fr...
متن کاملβ-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis
The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine...
متن کاملDual manganese-enhanced and delayed gadolinium-enhanced MRI detects myocardial border zone injury in a pig ischemia-reperfusion model.
BACKGROUND Gadolinium (Gd)-based delayed-enhancement MRI (DEMRI) identifies nonviable myocardium but is nonspecific and may overestimate nonviable territory. Manganese (Mn(2+))-enhanced MRI (MEMRI) denotes specific Mn(2+) uptake into viable cardiomyocytes. We performed a dual-contrast myocardial assessment in a porcine ischemia-reperfusion (IR) model to test the hypothesis that combined DEMRI a...
متن کاملHigh-resolution 3-dimensional reconstruction of the infarct border zone: impact of structural remodeling on electrical activation.
RATIONALE Slow nonuniform electric propagation in the border zone (BZ) of a healed myocardial infarct (MI) can give rise to reentrant arrhythmia. The extent to which this is influenced by structural rather than cellular electric remodeling is unclear. OBJECTIVE To determine whether structural remodeling alone in the infarct BZ could provide a substrate for re-entry by (i) characterizing the 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2015